FYI Calling all space nerds: Lets build a Dyson sphere

fly

omg
Oct 1, 2004
78,968
27,167
1,323
Marklar
₥83,255
Steam
mattressfish
http://www.sentientdevelopments.com/2012/03/how-to-build-dyson-sphere-in-five.html

Long article spoilered
Let's build a Dyson sphere!

And why wouldn't we want to?

By enveloping the sun with a massive array of solar panels, humanity would graduate to a Type 2 Kardashev civilization capable of utilizing nearly 100% of the sun's energy output. A Dyson sphere would provide us with more energy than we would ever know what to do with while dramatically increasing our living space. Given that our resources here on Earth are starting to dwindle, and combined with the problem of increasing demand for more energy and living space, this would seem to a good long-term plan for our species.

Implausible you say? Something for our distant descendants to consider?

Think again: We are closer to being able to build a Dyson Sphere than we think. In fact, we could conceivably get going on the project in about 25 to 50 years, with completion of the first phase requiring only a few decades. Yes, really.

Now, before I tell you how we could do such a thing, it's worth doing a quick review of what is meant by a "Dyson sphere".

Dyson Spheres, Swarms, and Bubbles

The Dyson sphere, also referred to as a Dyson shell, is the brainchild of the physicist and astronomer Freeman Dyson. In 1959 he put out a two page paper titled, "Search for Artificial Stellar Sources of Infrared Radiation" in which he described a way for an advanced civilization to utilize all of the energy radiated by their sun. This hypothetical megastructure, as envisaged by Dyson, would be the size of a planetary orbit and consist of a shell of solar collectors (or habitats) around the star. With this model, all (or at least a significant amount) of the energy would hit a receiving surface where it can be used. He speculated that such structures would be the logical consequence of the long-term survival and escalating energy needs of a technological civilization.

Needless to say, the amount of energy that could be extracted in this way is mind-boggling. According to Anders Sandberg, an expert on exploratory engineering, a Dyson sphere in our solar system with a radius of one AU would have a surface area of at least 2.72x1017 km2, which is around 600 million times the surface area of the Earth. The sun has an energy output of around 4x1026 W, of which most would be available to do useful work.

I should note at this point that a Dyson sphere may not be what you think it is. Science fiction often portrays it as a solid shell enclosing the sun, usually with an inhabitable surface on the inside. Such a structure would be a physical impossibility as the tensile strength would be far too immense and it would be susceptible to severe drift.


Dyson's original proposal simply assumed there would be enough solar collectors around the sun to absorb the starlight, not that they would form a continuous shell. Rather, the shell would consist of independently orbiting structures, around a million kilometres thick and containing more than 1x105 objects. Consequently, a "Dyson sphere" could consist of solar captors in any number of possible configurations. In a Dyson swarm model, there would be a myriad of solar panels situated in various orbits. It's generally agreed that this would be the best approach. Another plausible idea is that of the Dyson bubble in which solar sails, as well as solar panels, would be put into place and balanced by gravity and the solar wind pushing against it.

For the purposes of this discussion, I'm going to propose that we build a Dyson swarm (sometimes referred to as a type I Dyson sphere), which will consist of a large number of independent constructs orbiting in a dense formation around the sun. The advantage of this approach is that such a structure could be built incrementally. Moreover, various forms of wireless energy transfer could be used to transmit energy between its components and the Earth.

Megascale construction

So, how would we go about the largest construction project ever undertaken by humanity?

As noted, a Dyson swarm can be built gradually. And in fact, this is the approach we should take. The primary challenges of this approach, however, is that we will need advanced materials (which we still do not possess, but will likely develop in the coming decades thanks to nanotechnology), and autonomous robots to mine for materials and build the panels in space.

Now, assuming that we will be able to overcome these challenges in the next half-decade or so—which is not too implausible— how could we start the construction of a Dyson sphere?

Oxford University physicist Stuart Armstrong has devised a rather ingenious and startling simple plan for doing so—one which he claims is almost within humanity's collective skill-set. Armstrong's plan sees five primary stages of construction, which when used in a cyclical manner, would result in increasingly efficient, and even exponentially growing, construction rates such that the entire project could be completed within a few decades.

Broken down into five basic steps, the construction cycle looks like this:
Get energy
Mine Mercury
Get materials into orbit
Make solar collectors
Extract energy
The idea is to build the entire swarm in iterative steps and not all at once. We would only need to build a small section of the Dyson sphere to provide the energy requirements for the rest of the project. Thus, construction efficiency will increase over time as the project progresses. "We could do it now," says Armstrong. It's just a question of materials and automation.


And yes, you read that right: we're going to have to mine materials from Mercury. Actually, we'll likely have to take the whole planet apart. The Dyson sphere will require a horrendous amount of material—so much so, in fact, that, should we want to completely envelope the sun, we are going to have to disassemble not just Mercury, but Venus, some of the outer planets, and any nearby asteroids as well.

Why Mercury first? According to Armstrong, we need a convenient source of material close to the sun. Moreover, it has a good base of elements for our needs. Mercury has a mass of 3.3x1023 kg. Slightly more than half of its mass is usable, namely iron and oxygen, which can be used as a reasonable construction material (i.e. hematite). So, the useful mass of Mercury is 1.7x1023 kg, which, once mined, transported into space, and converted into solar captors, would create a total surface area of 245g/m2. This Phase 1 swarm would be placed in orbit around Mercury and would provide a reasonable amount of reflective surface area for energy extraction.

There are five fundamental, but fairly conservative, assumptions that Armstrong relies upon for this plan. First, he assumes it will take ten years to process and position the extracted material. Second, that 51.9% of Mercury's mass is in fact usable. Third, that there will be 1/10 efficiency for moving material off planet (with the remainder going into breaking chemical bonds and mining). Fourth, that we'll get about 1/3 efficiency out of the solar panels. And lastly, that the first section of the Dyson sphere will consist of a modest 1 km2 surface area.

And here's where it gets interesting: Construction efficiency will at this point start to improve at an exponential rate.

Consequently, Armstrong suggests that we break the project down into what he calls "ten year surges." Basically, we should take the first ten years to build the first array, and then, using the energy from that initial swarm, fuel the rest of the project. Using such a schema, Mercury could be completely dismantled in about four ten-year cycles. In other words, we could create a Dyson swarm that consists of more than half of the mass of Mercury in forty years! And should we wish to continue, if would only take about a year to disassemble Venus.

And assuming we go all the way and envelope the entire sun, we would eventually have access to 3.8x1026 Watts of energy.

Dysonian existence

Once Phase 1 construction is complete (i.e. the Mercury phase), we could use this energy for other purposes, like megascale supercomputing, building mass drivers for interstellar exploration, or for continuing to build and maintain the Dyson sphere.

Interestingly, Armstrong would seem to suggest that this might be enough energy to serve us. But other thinkers, like Sandberg, suggest that we should keep going. But in order for us to do so we would have to deconstruct more planets. Sandberg contends that both the inner and outer solar system contains enough usable material for various forms of Dyson spheres with a complete 1 AU radius (which would be around 42 kg/m2 of the sphere). Clearly, should we wish to truly attain Kardashev II status, this would be the way to go.



And why go all the way? Well, it's very possible that our appetite for computational power will become quite insatiable. It's hard to predict what a post-Singularity or post-biological civilization would do with so much computation power. Some ideas include ancestor simulations, or even creating virtual universes within universes. In addition, an advanced civilization may simply want to create as many positive individual experiences as possible (a kind of utilitarian imperative). Regardless, digital existence appears to be in our future, so computation will eventually become our most valuable and sought after resource.

That said, whether we build a small array or one that envelopes the entire sun, it seems clear that the idea of constructing a Dyson sphere should no longer be relegated to science fiction or our dreams of the deep future. Like other speculative projects, like the space elevator or terraforming Mars, we should seriously consider putting this alongside our other near-term plans for space exploration and work.

And given the progressively worsening condition of Earth and our ever-growing demand for living space and resources, we may have no other choice.

My concern is that if we disassemble Mercury, what effect does that have on our orbit?
 
Been done, f*ggot.

dyson_ball_dc24_1.jpg
 
As mercury looses mass, it's orbit around the sun will loosen. You run the risk of mercury breaking away. I'm not sure we want a planet running around loose in our interior solar system.
 
If I know anything about Mercury, you won't have to worry about it running loose for long. Their mechanical track record sucks.
 
As mercury looses mass, it's orbit around the sun will loosen. You run the risk of mercury breaking away. I'm not sure we want a planet running around loose in our interior solar system.

It's really no different than Uranus running around loose in our interior solar system.
 
[My concern is that if we disassemble Mercury, what effect does that have on our orbit?
Seriously? Think about the mass of Mercury. Think about the mass of the sun. Effect would be negligible.
 
Seriously? Think about the mass of Mercury. Think about the mass of the sun. Effect would be negligible.

over the short term, yes. But its still there. I'm not saying it will throw us out of the goldilocks zone next week, but who knows if it eventually could. The article also mentions using Venus...